ar X iv : 0 80 2 . 32 48 v 3 [ m at h . C A ] 1 3 O ct 2 00 8 LAPLACIANS ON THE BASILICA JULIA SET LUKE

نویسنده

  • ALEXANDER TEPLYAEV
چکیده

We consider the basilica Julia set of the polynomial P (z) = z − 1 and construct all possible resistance (Dirichlet) forms, and the corresponding Laplacians, for which the topology in the effective resistance metric coincides with the usual topology. Then we concentrate on two particular cases. One is a self-similar harmonic structure, for which the energy renormalization factor is 2, the spectral dimension is log 9/ log 6, and we can compute all the eigenvalues and eigenfunctions by a spectral decimation method. The other is graph-directed self-similar under the map z 7→ P (z); it has energy renormalization factor √ 2 and spectral dimension 4/3, but the exact computation of the spectrum is difficult. The latter Dirichlet form and Laplacian are in a sense conformally invariant on the basilica Julia set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 5 . 48 34 v 3 [ m at h . C O ] 6 S ep 2 00 8 Loebl - Komlós - Sós Conjecture : dense case

We prove a version of the Loebl-Komlós-Sós Conjecture for dense graphs. For any q > 0 there exists a number n0 ∈ N such that for any n > n0 and k > qn the following holds: if G be a graph of order n with at least n/2 vertices of degree at least k, then any tree of order k +1 is a subgraph of G.

متن کامل

ar X iv : m at h - ph / 0 40 90 62 v 2 1 3 O ct 2 00 4 A remark on rational isochronous potentials

We consider the rational potentials of the one-dimensional mechanical systems, which have a family of periodic solutions with the same period (isochronous potentials). We prove that up to a shift and adding a constant all such potentials have the form U (x) = 1 2 ω 2 x 2 or U (x) = 1 8 ω 2 x 2 + c 2 x −2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008